
1994
N95- 18992

NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM ',

MARSHALL SPACE FLIGHT CENTER

THE UNIVERSITY OF ALABAMA £o?/S

NEURAL NETWORKS APPLICATIONS TO CONTROL AND

COMPUTATIONS

Prepared By: Dr. Leon A. Luxemburg

Academic Rank: Assistant Professor

Institution and Department: Texas A&M University

NASA/MSFC:

Laboratory:
Division:

Branch:

Structures and Dynamics
Control Systems

Flight Dynamics

MSFC Colleagues: Richard Dabney

Henry Waites, Ph.D.

XXV

APPLICATIONS of NEURAL NETWORKS to FAST COMPUTATIONS

Our first problem is to use neural networks to develop a general high
precision computational algorithm for feedforward neural networks and

to show it efficiency by applying it to a solution of the inverse perspective

transformation problem in the Automated Rendezvous and Capture Space
program.

The inverse perspective problem for the Automated Rendezvous and

Capture program is defined as the determination of the 6 degrees
of freedom of the chase vehicle relative to the target vehicle. The
solution involves the Newton-Raphson method which is rather

cumbersome computationally. Therefore, a neural network approach

was suggested by Richard Dabney [1]. He suggested that instead of solving
a system of equations for each point, parameters of these equations can
be considered as inputs to some neural network and the solution of these

equations as an output. However, the major problem was the accuracy of

the solution. While an RMS value was quite low, the worst case precision
for a case of pitch angle remained unacceptably high- around 19.1%

We have used this problem to demonstrate a new approach to a fast,
high precision neural computing which reduces the errors to a more

acceptable level. This problem was successfully solved by introducing
and training a different type of neural network. We have achieved a
reduction of the worst case error to about 8.4% instead of 19.1% and the

RMS error was also reduced by about 30%. In our approach we used a

network with two layers with nodal sigmoid functions being hyperbolic
tangent and in the output layer we used identity function f(x)=x as a

nodal function. This choice of architecture can realize any function of n

variables as soon as we choose sufficiently many neurons in the two inner

layers. This follows from the Kolmogorov's theorem on representation of
function of several variables by using a superposition of functions of one

variables and arithmetic operations.

One of the essential features of our approach is to use an adaptive
learning rate to speed up learning and to minimize the worst case error

instead of sum-squared error as is usually done. We used a standard

backpropagation approach to learning with momentum and adjustable

biases. This helped to overcome a number of conversion and precision
problems encountered in the initial approach.

XXV-1

APPLICATIONS TO CONTROL PROBLEMS
m

Consider a linear plant

Yc= Ax + Bu

y= Cx
(1)

We assume that this system is controllable and observable and that n, p

and q are the dimensions of vectors x,u,y respectively. Our problem is to
demonstrate a capability of artificial neural networks to stabilize linear

plants.

Here we would like to construct a controller and a feedback

= Fz +Gy+ Hu

u = Klz + K2y + r
(2)

such that the overall system 1-2 is stable, where z is an n-q dimensional
vector and r is an external input. First, we want to formulate this control

problem in terms of an interpolation problem for a neural network with
linear nodal functions and with six layers. The overall system (1-2) can

be presented in the form:

}i, = Tw + Ru

where

A + BK 2 C BK I
r=l I

GC + HK 2 C F + HK 1

Furthermore, T can be represented as a product of three matrices

AIA2A 3
A zeros(n,n) B

where A 1 = I zeros(n- q,n) F G H I

XXV-2

is a (2n-q)X(2n+p) matrix, A2 =] 12n I is a

zeros(p,n) K 1 K 2

(2n+p)X(2n) matrix, and A3=[I2n-q lisa
C zeros(q,n-q)

(2n)X(2n-q) matrix. Now we recall a Lyapunov's Theorem [2] which says

that a matrix T which has a full rank is stable if and only if for any
positive definite matrix N there exists a positive definite matrix M such

that T' M+MT=-N, where T' is a transpose of T. In this theorem N can be

taken to be a unit matrix rather than an arbitrary matrix. Note also, that

for any positive definite matrix M there exists a matrix g such that M=gg'.

Therefore, in order to stabilize system (1) with a controller of system (2)
there should exist such matrices F,G,H, K1,K2,g such that

T gg' +gg' T + I2n_ q = 0 (3)

Now, expression gg' T is a product of six matrices g,g',A1,A2,A 3 and a unit

matrix (in this order). Therefore, this expression can be viewed as a

realizing function of a six layer neural network with weights of synaptic

interconnections given by matrices g,g',A1,A2,A 3 , with input vectors being

columns of the unit matrix and with linear nodal functions. Analogously,
expression Tgg' is a realizing function of another neural networks with

synaptic weight matrices transposed and in reverse order. Taking a

discrete sum N of these two neural networks we see that equation (3) is

equivalent to an interpolation problem for a neural network. This reduces

our stabilization problem for a plant (1) to an interpolation problem (3)

for a neural network N. Interpolation problems for a given neural

network are typically solved by a backpropagation method. Notice that
in our case some of the weights of the neural network are fixed and the

only variables weights are the ones that correspond to the unknown

matrices F,G,H, K1,K2,g. Let matrix E be given by the following formula:

E = Tgg'+gg'T+I

and let SSE be the sum of squared elements of E. Then the following
formulas axe true:

XXV-3

BSSE = 4(TE+ ET)g, BSSE = 4gg' E(A3y (A2) ', (4)
dg dA1

dSSE = 4(A1), gg, E(A3), '
0,4 2

(5)

In order to solve equation (3), we need to drive 85E to O, therefore a

training of the neural net can proceed via a gradient descent method

using equations (4) and (5) with the obvious modification due to the fact

that the only elements in matrices A1,A2,A 3 that change are the elements

of matrices F,G,H, K1,K 2. This gradient descent method has to be slightly

modified, so that we proceed by training each layer separately rather than
all layers at once in order to avoid getting stuck in local minima. We used

momentum and adaptive learning rate in our gradient descent method to

speed up learning. The method described above has been successfully

used to stabilize a specific numerical example with a nonminimal phase
plant.

A NEW METHOD OF LEARNING FOR FEEDFORWARD NEURAL
NETWORKS

We have successfully implemented a new method of training neural

nets which is a combination of gradient descent and a Newton-Raphson
method.This method significantly decreases the learning time. The details
are presented below. Let us consider a neural network N with k variable

weights. We can represent each set of weights as a vector w in a k-

dimensional Euclidean space R k. Let P={ Pi} be a finite set of input vectors

to a neural network N and let T ={ ti} be the set of corresponding target

output vectors. For every set of weights w from R t there is a set of output
vectors O={ o_} of N corresponding to the set of inputs. Then the sum-

squared error function f(w) is defined as f(w)= Z o,--ti .Our goal is tO

drive the errror function to 0, i.e. to find a set of weights w such that

f(w) = 0. We try to find this w by an iteration process starting from some

w 0 Let w_ be defined then we assume that there exists a vector A from

the weight space R k such that f(w, +A)= 0 and let

f(w_ +A)-f(w_)= Vf(w_)A be a first order approximation. Then in order

to find A we need to solve the equation

XXV-4

f(w,) + Vf(w,)A = 0 (7)

This is an underdetermined linear equation with respect to A. Let us add

to (7) another system of k equations:

aA =0 (8)

where a is some nonzero constant. The solution of (7)-(8) does not exist if

Vf(wl) is nonzero, however we can find the least squares solution A.

Then we define w m = wl +A. Continuing to update w_ in this fashion we

hope to find w_ arbitrary close to a solution of f(w_)= 0. In this algorithm

we vary O_ in order to minimize the error. Notice that a serves as a

magnitude control factor so that the magnitude of solution of (7)-(8)

decreases as a increases. In this method we start with weight vector w 0

obtained after some initial gradient descent training and then proceed

with the method just described. The obtained results are very encouraging.
We applied this method to the control problem described above to

compare it with the gradient descent method and found that the speed of
conversion increases 8-10 times.

CONCLUSION

We have described several interrelated problems in the area of neural

network computations. First we considered an interpolation problem, then

we have shown how to reduce a control problem to a problem of
interpolation by a neural network via Lyapunov function approach, and

finally we introduced a new, faster method of learning as compared with
the gradient descent method.

REFERENCES

1. Richard W. Dabney, Application of Neural Networks to Autonomous

Rendezvous and Docking of Space vehicles.

AIAA Space Programs and Technologies Conference, March 23-27, 1992,
huntsville, AL.

2. C.T. Chen, Linear System Theory and Design, Holt,Rhinehart and Winston,
New York, 1984.

XXV-5

